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ABSTRACT: Thanks to the pioneering studies of Østerud and co-workers, it is now increasingly understood that natural
polyphenols present in marine oils play an essential role in protecting omega-3 lipids from oxidation and autoxidation, ensuring that
no proinflammatory products are formed after intake as often happens with assumption of refined omega-3 concentrates. Strong
antioxidants exerting multiple biological functions, olive biophenols are ideally suited to functionalize marine oils, creating a synergy
that has the potential to improve public health across the world. This study identifies suitable avenues for advancing the sustainable
production of health-beneficial formulations based on newly obtained natural marine oils and olive phenolic extracts. Important
educational outcomes conclude the study.
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1. INTRODUCTION

The numerous health benefits of the biophenols found in Olea
europaea include antiatherogenic, cardioprotective, anticancer,
and neuroprotective activity.1 Research in the field is
flourishing, and book chapters2 and review articles3 regularly
summarize newly discovered findings concerning the physio-
logical role of these phenolic compounds, which include
oleuropein, hydroxytyrosol, tyrosol, and oleocanthal.
Being powerful antioxidants (free radical scavengers),4 olive

phenolic extracts can be used as highly effective nontoxic
replacements for toxic synthetic antioxidants used as
preservative food additives.5 These compounds also show
significant anti-inflammatory activity. In the case of hydrox-
ytyrosol [3,4-dihydroxyphenylethanol (HT)], quantum me-
chanical calculations and molecular docking simulations
suggest that the anti-inflammatory activity may be due to
binding and inhibition of the lipoxygenase and cyclooxygenase
enzymes.6 Another key relevant advantage in light of
pharmaceutical applications of these phenolics is their lack of
toxicity. For example, HT is not genotoxic or mutagenic, and
its consumption is safe even in large doses.7

Several olive phenolic extracts have been commercialized as
nutraceutical formulations with multiple health benefits,3

ranging from prevention of cardiovascular disease to bone
reinforcement, with the use of said formulations being at times
supported by clinical evidence from randomized control trials.8

Similarly, docosahexaenoic acid (DHA, C22:6n-3) and
eicosapentaenoic acid (EPA, C20:5n-3) omega-3 (or n-3)
long chain polyunsaturated fatty acids (PUFA) abundant in
oily blue fish exhibit anti-inflammatory, neuroprotective, and
antithrombotic properties by lowering heart rate and blood
pressure,9 which makes consumption of fish and of blue fish in

particular of fundamental relevance for the physical and mental
health of adults and children.
Unfortunately, insufficient consumption of EPA and DHA is

one of the main deficiencies in diets common to industrially
developed countries, which led Harris to introduce a new index
(EPA+DHA in red blood cells) directly related to changes in
EPA+DHA intake,10 to properly assess and evaluate this
deficiency.
In brief, enhancing the amount of EPA+DHA essential fatty

acids in the body requires either an increase in the frequency of
consumption of blue fish and seafood or omega-3 supple-
mentation. Growing at an annual rate of >10% (compound),
the $2.6 billion EPA/DHA ingredient global market in 2018 is
estimated to almost triple by 2026,11 further increasing
overfishing pressure on anchovy and sardine stocks, because
anchovy/sardine oils are the dominant raw materials used to
produce food and dietary supplement products.11

The main production process employed to obtain fish oil
omega-3 concentrate includes anchovy/sardine cooking and
pressing on board the shipping vessel, followed by extensive
chemical refining at omega-3 ingredient manufacturing sites.12

Recently, simple and effective methods for sustainably
sourcing olive polyphenols from both olive and fish processing
waste have been developed. In the case of olive phenolics, new
processes include adsorption and subsequent release with an
organic solvent of the polyphenol and lactone content in olive
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mill wastewater (OMWW) on a series of adsorbent resins,13

or, more simply, employing citric acid to stabilize and
progressively hydrolyze the polyphenolic glycosides in
vegetation waters.14 Extended to modern two-phase olive
mills, the latter process affords olive phenolic aqueous extracts
of unprecedented titer in hydroxytyrosol.15

In the case of anchovy fish oil, a new process starts from
anchovy processing waste and uses citrus-derived d-limonene
as the extraction solvent in a closed loop process in which the
biobased solvent is fully recycled, affording an oil rich not only
in EPA and DHA16 but also in valued vitamin D3.

17 When
compared to the multistep conventional fish oil extraction and
purification process, the new biobased circular process
provides significant technical, economic, and environmental
advantages.18

Following recent studies of Valenzuela and co-workers in
which the benefits of consuming a mixture of extra virgin olive
oil or hydroxytyrosol with n-3 PUFA (EPA + DHA or DHA)
have been demonstrated in animal models (liver and adipose
tissue),19−22 in this study, we aim to show how combining
sustainably sourced olive phenolic and omega-3 marine oil
extracts may synergistically improve public health while
providing substantial benefits to manufacturers of omega-3
and olive phenolic ingredients. Important educational out-
comes for bioeconomy educators conclude the study.

2. THE CASE FOR SYNERGY BETWEEN OLIVE
BIOPHENOLS AND OMEGA-3 LIPIDS

An immediate advantage of using olive polyphenols in
combination with omega-3 lipids is the enhanced chemical
stability to PUFA tryglycerides abundant in marine oils. This
was shown by Spain’s scholars in 2008 reporting that 90−95%
pure hydroxytyrosol obtained by hydrothermal treatment of
OMWW added at concentrations of 50 and 100 ppm to cod
liver oil (40% of omega-3 lipids) was able to inhibit ω-3 lipid
oxidation.23 The higher level of oxidation inhibition was
reached using 100 ppm of HT (Figure 1).
Exerting neuroprotective, anti-inflammatory, anticancer, and

even antiviral (against several influenza A viruses)24 activities,

hydroxytyrosol, which is abundant in O. europaea, was recently
found to be “the most actively investigated natural phenol”.25

The compound has limited antibacterial activity,26 but its great
pharmacological potential is widely recognized.27 For example,
in late 2020, Italy’s scholars reported the human safety of an
oral spray containing microencapsulated hydroxytyrosol
developed with the aim of inhibiting severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) endocytosis.28

Because of the evidence of industrial interest, a few months
later a joint team including researchers from a large food
company reported that OMWW is an excellent antioxidant for
retarding lipid oxidation in fish oil-enriched food products.29

Noting how the antioxidant properties of OMWW in fish bulk
oil had not been previously reported, the team showed how it
is enough to add lyophilized OMWW in 1 wt % amounts to
tuna oil (5 wt % in medium chain triglyceride oil) to inhibit
the formation of hydroperoxides, hexanal, and t,t-2,4-
heptadienal throughout the storage period (14 days) by
94.2%, 96.5%, and 100%, respectively.29 Volatile compounds
hexanal and nonanal (oxidation products of n-6 PUFAs) and
t,t-2,4-heptadienal (oxidation product of n-3 PUFAs) form
during the storage of tuna oil, with hexanal being the main
volatile formed during storage.
When compared to several antioxidants, including oregano

and parsley, ethylenediaminetetraacetic acid (EDTA), and
Trolox (a water-soluble α-tocopherol analogue), OMWW was
found to be the best antioxidant (Table 1). Remarkably, the

effectiveness of OMWW (as well as of parsley and oregano) as
an antioxidant was found to relate to the total phenol content
and oxygen radical absorbance capacity (ORAC) but not to
the iron(II) chelating activity.
In a complementary and straightforward approach, a marine

oil rich in omega-3 lipids such as algae oil (AO) is directly
mixed with extra virgin olive oil (EVOO).30 In detail, mixing a
commercial AO with a high concentration of n-3 PUFAs [35%
DHA, 20% EPA, and 5% docosapentaenoic acid (DPA,
C22:5n-3)] with a shelf life of 1 month with EVOO with a
minimum quantity of 60 mg/g of secoiridoids and 80% oleic
acid decreased the extents of oxidation processes in a dose-
dependent manner (Figure 2) throughout storage.
Eventually, after 10 weeks, the amount of n-3 PUFAs in the

commercial oil was decreased by ∼30%. It was enough to mix
the AO oil with EVOO in a 50:50 ratio (mixture III) to
decrease the reduction in the PUFA amount to 20%.
Eventually, in an 83:17 EVOO/AO mixture, the PUFA
content after 10 weeks was reduced by <10%. The team
concluded that the addition of EVOO rich in polyphenols to

Figure 1. Effect of hydroxytyrosol (Hyd) and propyl gallate (PG) at
different concentrations (10, 50, and 100 ppm) on the formation of
conjugated diene hydroperoxides in fish oil during oxidation at 40 °C.
Reproduced with permission from ref 23. Copyright 2008 American
Chemical Society.

Table 1. Percent Inhibition of the Formation of Oxidation
Compounds at the End of the Storage Study (14 days)
(adapted with permission from ref 29)

sample
% inhibition

peroxide values
% inhibition

hexanal/hexanal-d12

% inhibition
heptadienal/
hexanal-d12

control NAa NAa NAa

EDTA 75.5 51.0 71.7
oregano 63.0 93.1 100
OMWW 94.2 96.5 100
parsley 78.4 75.0 90.8
Trolox 68.3 35.2 63.7

aNot applicable.
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marine oils is “a simple alternative for the stabilization of
unstable oils rich in omega-3, facilitating their application in
the industry”.30

As mentioned above, the synergy between olive polyphenols
and omega-3 lipids may extend well beyond the enhancement
of omega-3 lipid oxidative stability.
For instance, as early as 2005, scholars in Brazil reported the

outcomes of a clinical study showing that supplementation
with olive oil in patients who had rheumatoid arthritis and
were at the same time using fish oil supplements resulted in a
more precocious and accentuated improvement when fish oil
supplements were used in combination with olive oil.31

The conventional industrial processes used to extract and
purify fish oil also remove the lipophilic polyphenols naturally
present in the fish fat,12 including the powerful antioxidant and
anti-inflammatory phlorotannins obtained by fish eating brown
algae.32

In 1986, studying the effect of 8 weeks of daily intake of
omega-3 lipids in the form of fish oil or omega-3 capsules,
Østerud found modest benefits in the activity of blood cells,
suggesting that concentrated omega-3 lipids did not have the
same health effects as marine oils in natural form. These
preliminary findings were subsequently confirmed by numer-
ous studies,33−35 suggesting that a daily fish intake more
effectively enhances the plasma concentration of n-3 PUFAs as
compared with the intake of concentrated EPA and DHA ethyl
esters in capsules.
Østerud and Elvevoll in Norway in the late 1990s first

suggested that purification significantly weakens the health
benefits of refined marine oils, freed of important natural
antioxidants. In 2001, they reported at a congress held in
Vienna the results of administering cold-pressed versus refined
marine oils to healthy volunteers. Better results, seen as a
consistent improvement in parameters related to the develop-
ment of cardiovascular disease, were noted by supplementation
with cold-pressed seal oil, despite a lower content of n-3 fatty
acids in the unrefined oil.34

Three years earlier, studying the effect of the intake of
various marine oils on the number and volume of platelets in
266 healthy volunteers, they reported that the combination of
cod liver oil and olive oil produces better effects than the oils
given separately.36 A few years later, they were the first to
recognize the commercial relevance of olive polyphenols to fish
oil-based supplements, applying for a patent describing the
combination of seal oil and cold-pressed virgin olive oil.37 The
trade name of the new combined oil was Olivita.
In a subsequent clinical study, healthy subjects were given 15

mL of combined cold-pressed olive oil per day with refined seal
or fish oil for 10−14 weeks. The recombined oils regained the
properties lost during refining with clear anti-inflammatory
effects seen in reduction of MCP-1 (monocyte chomotactic
protein-1), C-reactive protein (CRP), and thromboxane B2
and leukotriene B4 assuming the seal oil combined with olive
oil, and reduction in cytokines when assuming the fish oil
combined with olive oil.38 In brief, the combination of EVOO
and marine oils behaved like cold-pressed marine oils, while
said changes were not observed in fish or seal oils without
added EVOO.
In light of these and previous findings, scholars today

associate the absence of diabetes and coronary heart disease in
native Greenland Eskimos discovered by Bang and Dyerberg in
the late 1960s and subsequently ascribed to high hematic levels
of DHA and EPA abundant in seal and whale meat39 also “at
least partly ... to their co-ingestion of phlorotannins”.40

Indeed, the use of brown algal phlorotannins to prevent
refined fish oil from becoming rancid was proposed as early as
1996 when researchers in China reported that the antioxidant
activity of 1% high-molecular weight phlorotannins extracted
from Sargassum kjellmanianum was 2.6 times higher than that
of 0.02% BHT (tert-butyl-4-hydroxytoluene), a commonly
employed synthetic antioxidant.41

Today an omega-3 dietary supplement consisting of omega-
3 from seal oil, extra virgin olive oil obtained from Spain, and
vitamin D is produced in Norway and sold commercially across
the world. The manufacturer recommends the intake of six
capsules per day (not one or two as with omega-3 capsules
using refined marine oils) because the omega-3 fatty acids are
not concentrated.42

This suggests that newly developed olive biophenol extracts
added to concentrated natural fish oil extracted with nontoxic
and edible solvent limonene from, for example, anchovy
leftovers16 may reduce the number of needed capsules with
respect to the latter formulation, while enhancing the amount
of phenolic compounds whose benefits, as mentioned above,
go well beyond simple antioxidant activity.

3. THE CASE FOR CONCENTRATED OLIVE
BIOPHENOL EXTRACTS

Most routes of extraction of olive polyphenols from different
sources such as olive leafs or olive mill wastewater afford
extracts with phenolic concentrations of generally <20 wt %,
and often <10 wt %.3 A recently developed extraction and
separation protocol for olive mill wastewater polyphenols, on
the contrary, affords concentrated phenolic oils,43 ideally suited
to be mixed with marine oils.
In detail, raw OMWW obtained from olive mills undergoes

centrifugation and simple filtration to remove all solid particles
after which it is acidified to pH ≈2 with concentrated HCl and
defatted in a separatory funnel using n-hexane. The resulting
aqueous layers are extracted with EtOAc to retrieve the

Figure 2. Changes in the concentrations of polyunsaturated fatty
acids (PUFA; EPA + DHA + DPA) during accelerated storage
conditions of EVOO, AO, and mixtures: (■) EVOO, (●) mixture I
[17:83 (w/w) AO/EVOO], (▲) mixture II [25:75 (w/w) AO/
EVOO], (□) mixture III [50:50 (w/w) AO/EVOO], and (○) AO.
Each value is represented as the mean ± the standard deviation (n = 3
samples per oil). Reproduced with permission from ref 30. Copyright
2020 Elsevier.
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phenolic molecules, after which the EtOAc extract is dried over
anhydrous Na2SO4 and evaporated under vacuum affording a
yellowish-brown crude oil.
The crude extract is purified by dissolving it in EtOAc,

followed by addition of powdered silica and solvent
evaporation under reduced pressure. The oil adsorbed on
silica is loaded onto a silica gel septum packed in n-hexane,
which is first eluted with hexane to remove any residual apolar
component and then with EtOAc to recover the biophenol
fraction. The eluate is separated from the solvent via
evaporation under reduced pressure, affording a yellowish oil
comprised of olive phenolics [silica-purified polyphenol mixes
(SPPM)].
The same crude samples obtained from liquid−liquid

extraction were also purified through a C18 reversed phase
silica column packed in a 9:1 acetonitrile/acidified water
mixture [2.5% (w/w) formic acid]. The column was eluted
with the latter eluent, and then the polarity was gradually
increased to a 1:1 acetonitrile/acidified water mixture to
recover a biophenol fraction obtained as a yellowish oil [C18-
purified polyphenol mixes (CPPM)]. The oils (Figure 3) have
a virtually identical phenolic profile, with tyrosol and
hydroxytyrosol as the main components (Table 2).

Aiming to avoid the use of harmful n-hexane, the industrial
preparation of similar phenolic extracts will employ biobased
limonene44 to defat the raw OMWW and C18-reversed phase
silica as the optimal stationary phase because it enables the use

of water as a mobile phase combined with less polar solvents,
including environmentally friendly ethyl lactate.45

Hydroxytyrosol is well known to have good solubility in oil
and aqueous media, which allows useful application of
hydroxytyrosol-rich extracts to protect from oxidation of
multiple components and widely different foods such as
lard46 and foodstuffs rich in fish lipids.47 OMWW is a virtually
unlimited source of hydroxytyrosol and related valued olive
biophenols. It is enough to quickly assess the amount of
hydroxytyrosol and tyrosol contained therein and then to apply
the aforementioned green commercial extraction process to
OMWW batches with the largest amount of these poly-
phenols.48

Anchovy oil extracted with citrus-derived d-limonene from
anchovy filleting waste affords a natural (nonrefined) oil rich in
EPA and DHA,16 vitamin D3,

17 and zeaxanthin (Figure 4).

Found in several microalgae, fish, and seafood species, the
latter carotenoid is a powerful antioxidant and an important
neuroprotective agent.49 Even for this newly developed marine
oil, dubbed herein AnchoisOil, the addition of the new olive
biophenol extracts described above would further protect the
PUFA (and zeaxanthin) from oxidation.
At the same time, the intake of such a functionalized natural

fish oil would result in cardoprotective action thanks to the
olive biophenols integrated into the lipoproteins after they had
entered the bloodstream protecting their lipid components
from oxidation and exerting anti-inflammatory action at the
artery walls.40

Clinical studies will be necessary to demonstrate the synergy
between this new marine oil and concentrated olive biophenols
in the prevention of diseases such as coronarial hearth disease
or in the cure (relieving) of common morbidities such as
atherosclerosis, joint and muscle pain, and psoriasis.

4. CONCLUSIONS AND PERSPECTIVES
Largely thanks to the pioneering studies of Østerud, it is now
increasingly understood that supplementation of refined
omega-3 polyunsaturated lipids in the form of ethyl esters
may cause either a limited effect on human blood lipids,

Figure 3. Typical olive biophenol extracts obtained via liquid−liquid
extraction of OMWW followed by chromatographic purification
through a silica-based column. Reproduced from ref 48. Creative
Commons Attribution 4.0 International License.

Table 2. Amounts of Hydroxytyrosol and Tyrosol in the
SPPM and CPPM Extracts (reproduced with permission
from ref 43; copyright 2017 Elsevier)

sample hydroxytyrosol (mg/L) tyrosol (mg/L)

Biancolilla SPPM 65.90 ± 3.29 16.04 ± 0.81
Biancolilla CPPM 63.34 ± 3.16 18.25 ± 0.91
Cerasuola SPPM 125.43 ± 6.27 29.85 ± 1.49
Cerasuola CPPM 127.81 ± 6.37 28.12 ± 1.41

Figure 4. AnchoisOil obtained from anchovy fillet processing waste
after extraction with limonene and solvent evaporation under reduced
pressure. Reproduced with permission from ref 16. Copyright 2019
Wiley.
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platelets, and coagulation50 or even undesirable oxidative stress
leading to an increase in the levels of proinflammatory
products.51 Østerud and Elevoll suggest that the lack of
cardiovascular disease and type 2 diabetes observed in the late
1960s by Dyerbeg and Bang in native Greenlanders chiefly
eating seal and whale blubber39 has been due to the
concomitant action of omega-3 lipids and the natural
polyphenols contained in blubber protecting the unstable
PUFAs from oxidation and autoxidation.52

Aware of the unique antioxidant power of olive poly-
phenols,4 Norway’s scholars in the mid 1990s started to study
the clinical effects of mixing unrefined marine oils with extra
virgin olive oil rich in phenolic compounds.36

Eventually, the combination of marine oils and EVOO was
patented,37 and new nutraceutical products protected against
oxidative degradation and provided with further anti-
inflammatory, anti-atherogenic, and cardioprotective activities
due to synergy between olive biophenols and omega-3 lipids
were commercialized.42

Subsequent advances in marine oil and olive biophenol
extraction technologies have opened a route to the production
of new nutraceutical and pharmacological products based on
the combination of newly obtained natural marine oils and
olive phenolic extracts.
In the case of marine oils, a new general strategy for

obtaining highly valued marine oils in their natural form,
namely as triglycerides containing plentiful natural antiox-
idants, including astaxanthin and zeaxanthin, was demonstrated
for both anchovy16 and shrimp53 processing waste (rather than
from anchovy and shrimp) using biobased and biocompatible
citrus limonene as the extraction solvent.
In the case of olive phenolics, new green processes were

used to readily obtain highly concentrated and pure phenolic
extracts in two steps using liquid−liquid extraction followed by
chromatography on hydrophobized silica.43,48

In the era of overfishing54 and with the global population
rapidly aging (22% of the world’s projected population is
expected to be >60 years of age by 2050, from just 12% in
2015),55 these findings are of remarkable global relevance.
Rather than mixing of olive and marine oils, the aforemen-
tioned natural marine oils obtained from overfished and
mercury-free marine species such as anchovy and shrimp
processing waste will be further functionalized with small
amounts of olive oil waste extracts rich in pluripotent
biophenols such as hydroxytyrosol, tyrosol, and oleocanthal.
Following clinical studies, the nutraceutical and pharmaco-

logical products based on the aforementioned combination of
newly obtained natural marine oils and olive phenolics extracts
will hopefully provide and improve the health benefits already
observed via the combination of marine and olive oils.
Important educational consequences for green chemistry

and bioeconomy educators using recent research achievements
to foster student creativity56 originate from the new green
chemistry technologies summarized in this study for marine
oils and olive phenolics. Students indeed find in this case study
another example of how also in biochemistry and in the
bioeconomy progress in science is far from being linear and
requires the re-discovery of forgotten findings,57 such as those
concerning the unique role of antioxidants in marine oils and
the dangers associated with their removal during the
production of refined fish oil to manufacture food and
nutraceutical supplements.12,50−52 As the chemical industry
evolves toward biobased productions carried out in distributed

chemical plants using green chemistry technologies,58 students
learn how the production of marine oils and phenolic extracts
at low cost enabled by the aforementioned green chemistry
routes allows us to expand their commercial utilization of
fishery and agricultural waste in low-income and middle-
income countries, meeting a key requirement of the
bioeconomy for which highly valued functional substances
are sustainably derived from renewable resources.59
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(27) KarkovicḾarkovic,́ A.; Toric,́ J.; Barbaric,́ M.; Jakobusǐc ́ Brala,
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